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Abstract	16	

The	 diversity	 in	 hydrologic	models	 has	 historically	 led	 to	 great	 controversy	 on	 the	 “correct”	17	
approach	 to	 process-based	 hydrologic	 modeling,	 with	 debates	 centered	 on	 the	 adequacy	 of	18	
process	 parameterizations,	 data	 limitations	 and	 uncertainty,	 and	 computational	 constraints	19	
on	model	 analysis.	 In	 this	 paper	we	 revisit	 key	modeling	 challenges,	 outlined	 by	 Freeze	 and	20	
Harlan	nearly	50	years	ago,	on	requirements	to	(1)	define	suitable	model	equations,	(2)	define	21	
adequate	model	parameters,	and	(3)	cope	with	limitations	in	computing	power.	We	outline	the	22	
historical	modeling	challenges,	 summarize	modeling	advances	 that	address	 these	challenges,	23	
and	define	outstanding	research	needs.	We	illustrate	how	modeling	advances	have	been	made	24	
by	groups	using	models	of	different	type	and	complexity,	and	we	argue	 for	the	need	to	more	25	
effectively	use	our	diversity	of	modeling	approaches	 in	order	 to	advance	our	collective	quest	26	
for	physically	realistic	hydrologic	models.	27	

1 Introduction	28	

The	 research	 community	 exhibits	 great	 diversity	 in	 its	 approach	 to	 hydrologic	modeling,	29	
with	 different	 models	 positioned	 at	 different	 points	 along	 a	 continuum	 of	 complexity.	30	
Models	can	be	defined	both	in	terms	of	process	complexity,	i.e.,	to	what	extent	do	different	31	
models	explicitly	represent	specific	processes;	and	spatial	complexity,	i.e.,	to	what	extent	do	32	
different	models	explicitly	represent	details	of	 the	 landscape	and	the	 lateral	 flow	of	water	33	
across	model	 elements.	 Such	model	 diversity	 has	 led	 to	 great	 community	 debates	 on	 the	34	
“correct”	approach	to	process-based	hydrologic	modeling	[Wood	et	al.	1988;	Grayson	et	al.	35	
1992b,	1992a;	Famiglietti	and	Wood	1995;	Reggiani	et	al.	1998;	Beven	2002;	Sivapalan	et	al.	36	
2003;	Maxwell	and	Miller	2005;	Wood	et	al.	2011;	Beven	and	Cloke	2012;	Wood	et	al.	2012],	37	
with	the	debate	centered	around	issues	of	the	adequacy	of	process	parameterizations,	data	38	
limitations	and	uncertainty,	and	computational	constraints	on	model	analysis.	39	
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This	synthesis	paper	is	an	outcome	of	the	Symposium	in	Honor	of	Eric	Wood:	Observations	40	
and	Modeling	across	Scales,	held	June	2-3,	2016	in	Princeton,	New	Jersey,	USA.		The	purpose	41	
of	this	paper	is	to	revisit	the	historical	debates	on	process-based	hydrologic	modeling	and	42	
ask	 the	 following	 question:	 How	 can	 we	 combine	 different	 perspectives	 on	 hydrologic	43	
modeling	 to	 advance	 the	 quest	 for	 physical	 realism?	 [Kirchner	 2006;	 Clark	 et	 al.	 2016].	44	
Specifically,	 we	 focus	 attention	 on	 the	 three	 fundamental	 questions	 that	 were	 posed	 by	45	
Freeze	 and	 Harlan	 [1969]	 in	 their	 seminal	 “blueprint”	 for	 a	 physically-based	 hydrologic	46	
response	model:	47	

1. Are	physically	based	mathematical	descriptions	of	hydrologic	processes	available?	48	
Are	 the	 interrelationships	 between	 the	 component	 phenomena	 well	 enough	49	
understood?	 Are	 the	 developments	 adaptable	 to	 a	 simulation	 of	 the	 entire	50	
hydrologic	cycle?	51	

2. Is	 it	 possible	 to	 measure	 or	 estimate	 accurately	 the	 controlling	 hydrologic	52	
parameters?	Are	the	amounts	of	necessary	input	data	prohibitive?	53	

3. Have	the	earlier	computer	limitations	of	storage	capacity	and	speed	of	computation	54	
been	 overcome?	 Is	 the	 application	 of	 digital	 computers	 to	 this	 type	 of	 problem	55	
economically	feasible?	56	

We	posit	that	these	questions,	published	almost	fifty	years	ago,	are	very	relevant	today	and	57	
nicely	frame	the	debates	on	process-based	hydrologic	modeling.		58	

We	 organize	 the	 paper	 around	 the	 three	 questions	 posed	 by	 Freeze	 and	 Harlan,	 on	 (1)	59	
model	 structure;	 (2)	model	 parameter	 values;	 and	 (3)	model	 execution	 (computing).	 For	60	
each	question	we	define	the	major	research	challenges,	and	summarize	the	different	ways	61	
that	the	community	has	risen	to	meet	these	challenges.	Our	overall	goals	are	to	demonstrate	62	
how	 diverse	 hydrologic	 modeling	 approaches	 advance	 the	 collective	 quest	 for	 physically	63	
realistic	 hydrologic	models,	 and	 to	 define	 additional	 research	 that	 is	 necessary	 to	 further	64	
advance	process-based	hydrologic	models.	65	

2 Model	structure	66	

2.1 Modeling	challenges	67	
The	 first	 question	 posed	 by	 Freeze	 and	 Harlan	 [1969]	 focuses	 on	 the	 adequacy	 of	 the	68	
mathematical	descriptions	of	system	of	interest.	Such	mathematical	descriptions	define	the	69	
structure	 of	 a	 model.	 They	 include	 both	 the	 equations	 used	 to	 parameterize	 individual	70	
processes	as	well	as	the	interactions	among	processes	and	across	scales.	71	

A	major	research	challenge	is	the	problem	of	scaling,	or	closure	[Wood	et	al.	1988;	Blöschl	72	
and	 Sivapalan	 1995;	 Reggiani	 et	 al.	 2001;	 Beven	 2006],	 i.e.,	 how	 best	 to	 represent	 the	73	
influence	 of	 small-scale	 heterogeneities	 on	 large-scale	 fluxes,	 how	 best	 to	 represent	74	
interactions	 among	 processes,	 and	 the	 connectivity	 of	 water	 across	 the	 landscape.	 The	75	
scaling	 challenge	 is	 ubiquitous.	 For	 example,	 Mahrt	 [1987]	 demonstrates	 how	 localized	76	
areas	of	 instability	can	dominate	large-scale	energy	fluxes;	Scott	et	al.	[2008]	demonstrate	77	
that	transpiration	from	narrow	riparian	corridors	in	arid	regions	is	much	greater	than	the	78	
local	precipitation;	Seyfried	et	al.	 [2009]	demonstrate	 that	deep	snow	drifts	produce	 local	79	
runoff	“hotspots”	that	generate	a	disproportionate	amount	of	the	catchment	runoff;	Tromp-80	
van	Meerveld	and	McDonnell	[2006a,	2006b]	demonstrate	that	the	water	stored	in	bedrock	81	
depressions	must	be	raised	to	a	sufficient	level	in	order	to	connect	bedrock	depressions	and	82	
generate	 hillslope	 outflow.	 The	 community	 has	 risen	 to	meet	 these	 scaling	 challenges	 in	83	
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very	different	ways	–	different	models	use	very	different	sets	of	equations	to	describe	the	84	
large-scale	manifestation	of	spatial	heterogeneity,	process	interactions,	and	connectivity.	85	

The	different	solutions	to	the	scaling/closure	problem	can	be	distinguished	by	the	extent	to	86	
which	 the	 effort	 is	 focused	 on	 developing	 new	 large-scale	 flux	 parameterizations	 or	87	
numerically	 integrating	 the	 small-scale	 heterogeneities	 across	 space.	 Such	 differences	 are	88	
perhaps	 best	 illustrated	 by	 considering	 the	 different	 approaches	 used	 to	 simulate	 the	89	
transmission	of	water	 through	 catchments.	 In	 bucket-style	 rainfall-runoff	models	 –	 at	 the	90	
simplest	end	of	 the	complexity	continuum	–	 the	 large-scale	 transmission	of	water	 is	often	91	
defined	as	a	linear	(or	near-linear)	function	of	water	storage	[e.g.,	see	the	synthesis	in	Clark	92	
et	 al.	 2008].	 Such	 large-scale	 closure	 relations	 implicitly	 represent	 the	 small-scale	93	
heterogeneity	 of	 flow	 paths,	 including	 the	 localized	 areas	 of	 high	 conductivity	 (e.g.,	94	
macropores)	that	dominate	the	large-scale	response	[Beven	and	Germann	1982;	McDonnell	95	
1990].	By	contrast,	the	more	complex	3D	variably	saturated	flow	models	typically	use	small-96	
scale	 closure	 relations	 [Maxwell	 and	 Miller	 2005;	 Rigon	 et	 al.	 2006],	 where	 unsaturated	97	
hydraulic	conductivity	 is	defined	as	a	highly	non-linear	 function	of	soil	moisture	[e.g.,	Van	98	
Genuchten	1980].	These	3D	models	compute	 large-scale	 fluxes	by	spatially	 integrating	the	99	
small-scale	heterogeneities	[Maxwell	and	Kollet	2008;	Kollet	et	al.	2010].	These	differences	100	
in	solutions	to	the	scaling	problem	are	not	mutually	exclusive,	and	both	sets	of	solutions	can	101	
occur	in	the	same	model.	102	

When	viewed	in	this	way,	the	different	solutions	to	the	scaling/closure	problem	are	readily	103	
shared	among	different	modeling	groups	that	employ	very	different	modeling	approaches.	104	
To	 explain	 this	 perspective,	 consider	 the	 inequality	 that	 describes	 ideal	 relationships	105	
between	 the	model	 resolution	 and	 the	 length	 scale	 of	 resolved	 and	 unresolved	 processes	106	
[Wood	et	al.	1988]	107	

	 		 (1)	108	

where	 	is	the	length	scale	of	the	rapidly	varying	hydrologic	response,	 	is	the	length	scale	109	
of	 the	slowly	varying	quantities,	and	 	is	 the	 length	scale	of	 the	model	element	(note	 the	110	
assumption	that	the	spatial	scale	of	processes	below	the	grid	resolution	is	clearly	separated	111	
from	 the	 spatial	 scale	 of	 processes	 above	 the	model	 resolution;	 a	 condition	 that	 is	 rarely	112	
achieved	 in	practice	 [Fan	and	Bras	1995]).	Critically,	equation	(1)	requires	 that	processes	113	
below	the	 length	scale	of	 the	model	element	must	be	represented	 implicitly	 (e.g.,	 through	114	
large-scale	 flux	 parameterizations)	 and	 processes	 above	 the	 length	 scale	 of	 the	 model	115	
element	must	 be	 represented	 explicitly	 (e.g.,	 through	numerical	 integration	over	 spatially	116	
distributed	model	elements).	117	

The	move	of	large-domain	hydrologic	and	land	models	towards	“hyper”	resolution	[Wood	et	118	
al.	 2011],	 e.g.,	 1-km	 or	 100m,	 emphasizes	 the	 need	 for	 general	 parameterizations	 of	119	
hydrological	processes	at	 this	scale.	However,	 this	 is	still	an	unsolved	problem:	we	do	not	120	
have	firm	evidence	that	the	structure	and	parameter	values	of	our	element-scale	equations	121	
correspond	 to	hydrologic	 reality	at	 those	scales.	One	of	 the	most	 important	causes	of	 this	122	
difficulty	 is	 the	 spatial	 heterogeneity	 in	 the	 initial	 and	 boundary	 conditions,	 and	 in	 the	123	
material	properties	of	the	medium.	This	heterogeneity	occurs	at	multiple	spatial	scales,	and	124	
has	 multiple	 physical	 causes	 [Seyfried	 and	 Wilcox	 1995].	 The	 multiple	 scales	 of	125	
heterogeneity	 are	 manifest	 as	 multiple	 dominant	 processes	 [Grayson	 and	 Blöschl	 2001],	126	
and	 also	 as	 processes	 without	 a	 well-defined	 spatial	 scale	 (e.g.	 preferential	 flow	 in	 the	127	
snowpack,	on	the	land	surface,	 in	the	subsurface).	These	problems	cannot	be	solved	solely	128	
by	numerical	 integration	 across	 space.	The	next	 section	 summarizes	 recent	 in	developing	129	
large-scale	flux	parameterizations,	and	in	effectively	resolving	dominant	processes.	130	

	 l≪D≪L

	l 	L
	D
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2.2 Modeling	solutions	131	
The	common	challenge	of	developing	large-scale	flux	parameterizations	has	been	addressed	132	
in	a	number	of	ways.	One	class	of	methods	 is	statistical-dynamical	 flux	parameterizations,	133	
where	 large-scale	fluxes	are	defined	based	on	probability	distributions	of	sub-grid	or	sub-134	
element	model	state	variables.	For	example,	area-average	infiltration	can	be	parameterized	135	
based	on	probability	distributions	of	water	table	depth	[Beven	and	Kirkby	1979;	Sivapalan	136	
et	al.	1987]	or	on	probability	distributions	of	soil	moisture	[Moore	and	Clarke	1981;	Wood	137	
et	al.	1992].	Similar	statistical-dynamical	approaches	are	used	to	parameterize	the	impact	of	138	
frozen	 soils	 on	 area-average	 infiltration	 [Koren	 et	 al.	 1999]	 and	 the	 impact	 of	 spatial	139	
variability	of	snow	on	area-average	energy	fluxes	[Luce	et	al.	1999;	Liston	2004;	Clark	et	al.	140	
2011a].	 Another	 class	 of	 methods	 is	 scale-dependent	 parameterizations,	 where	 new	 flux	141	
parameterizations	 are	 defined	 directly	 at	 the	 scale	 of	 interest.	 Examples	 of	 this	 class	 of	142	
methods	 include	 the	empirically	derived	storage-discharge	relationships	described	earlier	143	
[Ambroise	et	al.	1996;	Clark	et	al.	2008;	Fenicia	et	al.	2011;	Brauer	et	al.	2014].	Similarly,	144	
large-scale	 stability	 corrections,	 used	 in	 computations	 of	 land-atmosphere	 energy	 fluxes,	145	
implicitly	 represent	 the	 impact	 of	 local	 pockets	 of	 instability	 on	 large-scale	 fluxes	 [Mahrt	146	
1987].	 There	 is	 a	 strong	 need	 to	 synthesize,	 evaluate,	 and	 compare	 these	 large-scale	147	
parameterizations,	in	order	to	improve	the	physical	realism	of	hydrologic	models	[Clark	et	148	
al.	2011b;	Clark	et	al.	2015b;	Clark	et	al.	2016].	149	

Statistical-dynamic	flux	parameterizations	rely	on	the	assumption	that	the	model	scale	D	is	150	
large	compared	to	the	length-	or	time-scale	of	the	heterogeneity	of	hydrological	response	l.	151	
In	 other	words,	 the	 size	 of	 a	model	 element	 is	 large	 compared	 to	 the	 scale-of-fluctuation	152	
[Rodríguez‐Iturbe	1986]	or	the	integral-scale	[Dagan	1994]	of	the	underlying	process.	 In	153	
that	 case,	 univariate	 probability	 density	 functions	 can	 be	 used	 that,	 when	 spatially,	154	
temporally	 or	 probabilistically	 integrated,	 result	 in	 small	 variance	 representative	155	
parameters	at	the	scale	of	the	model	elements	that	do	not	depend	on	the	model	state	(called	156	
full	closure).	However,	 if	 l	and	D	are	comparable	 in	scale,	 this	becomes	problematic.	Here,	157	
much	 can	 be	 learned	 from	 the	 upscaling	 research	 that	 has	 been	 done	 in	 stochastic	158	
subsurface	hydrology	to	derive	representative	hydraulic	conductivities	at	the	scale	of	model	159	
blocks	 [see	Sánchez-Vila	et	al.	1996	 for	a	 review].	These	approaches	can	be	distinguished	160	
into	two	main	categories	[Bierkens	and	Van	der	Gaast	1998]:	direct	upscaling,	whereby	the	161	
spatial	statistics,	i.e.	mean	and	spatial	covariance,	of	the	block-scale	hydraulic	conductivity	162	
are	directly	derived	from	integrating	the	small	scale	spatial	statistics,	and	indirect	upscaling	163	
where	 the	 hydraulic	 conductivity	 is	 first	 stochastically	 simulated	 or	 interpolated	 at	 the	164	
smallest	 scale	 and	 then	 upscaled	 by	 non-linear	 averaging.	 Direct	 methods	 work	 best	 for	165	
heterogeneity	 that	 can	 be	 described	 by	 multi-Gaussian	 random	 functions.	 However,	166	
numerical	integration	across	space	may	be	necessary	if	the	heterogeneity	is	more	organized	167	
or	 of	 larger	 complexity.	 It	 is	 important	 to	 notice	 however,	 that	 full	 closure	 is	 often	 not	168	
possible,	resulting	in	representative	parameterizations	that	change	with	the	model	state.	169	

The	 challenge	 of	 effectively	 resolving	 dominant	 processes	 has	 also	 been	 attacked	 in	170	
different	 ways.	 While	 one	 tactic	 is	 to	 simply	 discretize	 the	 domain	 into	 the	 highest	171	
resolution	 grid	 that	 modern	 computers	 allow	 (the	 numerical	 integration	 across	 space	172	
described	above)	[Freeze	and	Harlan	1969;	Maxwell	et	al.	2015],	 this	approach	constrains	173	
capabilities	 to	 extensively	 experiment	 with	 alternative	 model	 configurations	 and	 to	174	
characterize	 model	 uncertainty	 [Beven	 and	 Cloke	 2012;	 Wood	 et	 al.	 2012].	 Hence,	 for	175	
practical	 reasons,	 the	 challenge	 of	 spatial	 integration	 is	 commonly	met	 using	 concepts	 of	176	
hydrologic	 similarity,	often	 implemented	at	multiple	 levels	of	granularity	within	 the	same	177	
model.	 At	 a	 fine	 level	 of	 granularity,	 Wang	 and	 Leuning	 [1998]	 make	 separate	 stomatal	178	
conductance	calculations	on	sunlit	and	shaded	leaves	to	improve	scaling	from	the	leaf	to	the	179	
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canopy.	 Similarly,	 Swenson	 and	 Lawrence	 [2012]	 make	 separate	 energy	 balance	180	
calculations	over	 snow	covered	and	snow	 free	 terrain	 to	 improve	estimates	of	 large-scale	181	
energy	fluxes.	At	the	system	scale	many	models	spatially	integrate	across	discrete	landscape	182	
types	 to	 capture	 the	 large-scale	 manifestation	 of	 small-scale	 heterogeneity	 [e.g.,	 Flügel	183	
1995;	Tague	and	Band	2004].	For	example,	Newman	et	al.	[2014]	spatially	integrate	across	184	
a	small	number	of	discrete	landscape	types	in	order	to	reproduce	the	local	runoff	“hotspots”	185	
described	by	Seyfried	et	al.	 	[2009].	More	recently,	Chaney	et	al.	[2016a]	demonstrate	that	186	
the	use	of	spatially	interacting	hydrologic	response	units	can	reduce	computational	cost	of	a	187	
fully	distributed	hydrologic	model	by	three	orders	of	magnitude	without	appreciable	losses	188	
in	 information.	 Like	 the	 large-scale	 flux	 parameterizations,	 there	 is	 a	 strong	 need	 to	189	
rigorously	compare	different	approaches	to	explicitly	resolve	dominant	processes.	190	

An	 interesting	 twist	 is	 the	 interplay	between	explicitly	 representing	small-scale	processes	191	
and	avoiding	or	reducing	redundant	calculations	across	large	model	domains.	For	example,	192	
in	the	push	for	hillslope-resolving	models	across	large	geographical	domains,	one	approach	193	
is	to	use	the	concept	of	representative	hillslopes	[Troch	et	al.	2003;	Hazenberg	et	al.	2015;	194	
Ajami	et	al.	2016].	The	representative	hillslope	has	a	 length	dimension	much	smaller	than	195	
the	length	scale	of	the	model	element,	and	the	hillslope	is	discretized	into	columns	along	an	196	
axis	 perpendicular	 to	 the	 stream	 in	order	 to	 explicitly	 resolve	 lateral	 flow	processes.	 The	197	
hydrologic	and	energy	fluxes	from	this	single	hillslope,	or	averaged	across	local	hillslopes	of	198	
different	 types,	are	 then	considered	representative	of	 the	model	element	as	a	whole.	This	199	
approach	spatially	integrates	both	along	a	hillslope	and	among	hillslopes.	Such	multi-scale	200	
approaches	 show	 considerable	 promise	 and	will	 likely	 be	 increasingly	 used	 to	 represent	201	
how	 small-scale	 heterogeneities,	 interactions	 among	 processes	 and	 the	 connectivity	 of	202	
water	across	the	landscape	affects	large-scale	behavior.	203	

A	 key	 challenge	 is	 to	 isolate	 and	 scrutinize	 competing	modeling	 approaches	 to	 represent	204	
scaling	 and	 heterogeneity.	 Peters-Lidard	 et	 al.	 (this	 issue)	 proposes	 the	 idea	 that	 the	205	
approximations	 in	 our	 models	 can	 be	 treated	 as	 hypotheses	 that	 can	 be	 tested	 in	 an	206	
information-based	framework.	Such	advances	in	model	evaluation	methods	will	be	critical	207	
in	order	to	accelerate	advances	in	process-based	hydrologic	models.	208	

3 Model	parameters	209	

3.1 Modeling	challenges	210	
The	second	question	posed	by	Freeze	and	Harlan	[1969]	focuses	on	the	availability	of	data	211	
to	define	system	properties	(model	parameter	values).	212	

A	key	part	of	this	modeling	challenge	revolves	around	the	availability	and	quality	of	spatial	213	
information	on	model	parameters.	For	some	model	parameters,	spatial	information	simply	214	
does	 not	 exist.	 Examples	 of	 missing	 parameters	 include	 those	 that	 define	 the	 temporal	215	
decay	 of	 snow	 albedo	 and	 the	 recession	 characteristics	 of	 shallow	 aquifers.	 In	 such	216	
situations	 process-based	 hydrologic	 and	 land	 models	 often	 treat	 these	 uncertain	217	
parameters	as	physical	constants,	adopting	hard-coded	parameters	that	are	selected	based	218	
on	 order-of-magnitude	 considerations	 or	 on	 limited	 experimental	 data	 [Mendoza	 et	 al.	219	
2015;	Cuntz	et	al.	2016].	For	other	parameters	the	available	spatial	information	is	limited	to	220	
broad	 landscape	 characteristics;	 e.g.,	 the	 parameters	 controlling	 carbon	 assimilation	 and	221	
stomatal	 conductance	 are	 typically	 tied	 to	 vegetation	 type	 [Bonan	 et	 al.	 2011;	 Niu	 et	 al.	222	
2011],	 or	 the	 available	 soil	maps	 impose	 the	 same	 hydraulic	 properties	 over	 large	 areas	223	
[Miller	 and	 White	 1998].	 Such	 ill-defined	 information	 on	 vegetation	 and	 soils	 greatly	224	
underestimates	 the	 tremendous	 spatial	heterogeneity	 that	occurs	 in	nature.	Finally,	when	225	
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spatial	information	does	exist	it	may	have	limited	spatial	representativeness	and	relevance	226	
–	for	example,	the	information	on	hydraulic	conductivity	from	soil	pits	may	only	have	weak	227	
relations	 with	 the	 transmission	 of	 water	 throughout	 catchments	 [Beven	 1989].	 Such	228	
limitations	notwithstanding,	the	challenge,	really,	is	to	make	the	most	of	the	information	we	229	
do	have,	and	generate	new	information	where	we	can	(e.g.,	new	observations),	 in	order	to	230	
improve	estimates	of	the	spatial	variations	in	the	storage	and	transmission	properties	of	the	231	
landscape,	 including	 the	 scale	 dependence	 of	 these	 properties	 and	 their	 transferability	232	
across	spatio-temporal	scales	[Klemeš	1986;	Samaniego	et	al.	2010;	Melsen	et	al.	2016].	The	233	
next	 section	 summarizes	 how	 the	 hydrologic	 modeling	 community	 is	 rising	 to	 this	234	
challenge.	235	

3.2 Modeling	solutions	236	
The	solutions	to	improve	information	on	model	parameters	are	general	and	can	be	applied	237	
across	 multiple	 models	 of	 different	 type	 and	 complexity.	 We	 see	 three	 specific	 paths	238	
forward.	 	 First,	 there	 are	numerous	 opportunities	 to	 improve	 information	on	 geophysical	239	
properties,	 including	 estimates	 of	 vegetation	 structure	 [Simard	 et	 al.	 2011],	 soil	 depth	240	
[Pelletier	et	al.	2016],	soil	properties	[Chaney	et	al.	2016b],	bedrock	depth	and	permeability	241	
[Fan	 et	 al.	 2015]	 and	 the	 physical	 characteristics	 of	 rivers	 [Gleason	 and	 Smith	 2014].	242	
Second,	 it	 is	possible	 to	 improve	the	way	that	geophysical	 information	 is	used	to	estimate	243	
model	parameters.	For	example,	the	Multi-scale	Parameter	Regionalization	(MPR)	approach	244	
of	Samaniego	et	al.	 [2010]	 focuses	attention	squarely	on	 the	 transfer	 functions	 that	 relate	245	
geophysical	 attributes	 to	model	parameters	 –	Samaniego	et	al.	 apply	 transfer	 functions	at	246	
the	 finest	 spatial	 scale	 of	 the	 geophysical	 data	 (e.g.,	 the	 soil	 polygons)	 and	 then	 apply	247	
parameter-dependent	 operators	 to	 upscale	 the	 fine-scale	 model	 parameters	 to	 the	248	
resolution	 of	 the	 model.	 The	 parameter	 estimation	 in	 MPR	 is	 hence	 centered	 on	 the	249	
coefficients	 in	 the	 transfer	 functions	 used	 to	 relate	 geophysical	 attributes	 to	 model	250	
parameters,	 maximizing	 the	 information	 extracted	 from	 the	 geophysical	 data.	 Much	251	
research	has	focused	on	pedotransfer	functions	to	relate	soil	properties	to	soil	parameters	252	
[e.g.,	Schaap	et	al.	2001],	and	there	has	been	limited	work	to	relate	geophysical	attributes	to	253	
other	model	parameters	such	as	those	controlling	the	impact	of	soil	moisture	on	saturated	254	
areas	 [Balsamo	 et	 al.	 2011].	 Third,	 there	 is	 considerable	 scope	 to	 improve	 the	 way	 that	255	
multivariate	 data	 is	 used	 to	 constrain	model	 parameter	 values.	 A	 key	 path	 forward	 is	 to	256	
identify	different	signatures	from	the	data	that	can	be	used	to	improve	parameter	values	in	257	
different	parts	of	the	model	[Gupta	et	al.	2008;	Yilmaz	et	al.	2008;	Pokhrel	et	al.	2012;	Vrugt	258	
and	Sadegh	2013;	Rakovec	et	al.	2015].	Together,	 focused	effort	on	improving	geophysical	259	
information,	 improving	the	 links	between	geophysical	 information	and	model	parameters,	260	
and	better	constraining	model	parameters,	will	go	a	long	way	to	improve	parameter	values	261	
across	multiple	models.	262	

A	 very	 different	 solution	 is	 stochastic	 modeling.	 Stochastic	 modeling	 accepts	 that	263	
controlling	 parameters	 are	 impossible	 to	 measure	 or	 estimate,	 and	 instead	 generates	264	
synthetic	 model	 parameter	 fields	 using	 probability	 distributions	 with	 assumed	 length	265	
scales.	 For	 example,	 Maxwell	 and	 Kollet	 [2008]	 use	 spatially	 correlated	 random	 fields	 of	266	
saturated	 hydraulic	 conductivity	 to	 define	 the	 fine-scale	 spatial	 structure	 of	 their	 model	267	
domain,	 and	 evaluate	 the	 impact	 of	 this	 fine-scale	 structure	 on	 hillslope	 runoff.	 These	268	
approaches	thus	derive	from	the	indirect	upscaling	methods	(numerical	integration	across	269	
space)	 developed	 in	 stochastic	 subsurface	 hydrology.	 Similar	 approaches	 were	 used	 by	270	
Kollet	et	al.	[2010]	in	their	proof-of-concept	study	illustrating	the	spatial	integration	of	fine-271	
scale	 3D	 variably	 saturated	 flow	 simulations.	 The	 downside	 of	 such	 stochastic	 simulation	272	
approaches	 is	 that	 multiple	 realizations	 are	 necessary	 to	 separate	 the	 signals	 from	 the	273	
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imposed	random	variability,	making	such	approaches	computationally	challenging	for	fine-274	
scale	simulations	over	large	geographical	domains	[Fatichi	et	al.	2016].	275	

A	 remaining	 challenge,	 that	 seems	 to	 be	 difficult	 to	 solve,	 is	 to	 parameterize	 the	 deeper	276	
subsurface	at	regional	to	continental	scales	in	order	to	support	large-domain	groundwater	277	
modeling	[Bierkens	2015;	Clark	et	al.	2015a].	Methods	such	as	MPR	[Samaniego	et	al.	2010]	278	
will	not	help	here	because	MPR	relies	on	large-extent	high-resolution	auxiliary	information	279	
that	is	available	for	the	surface	and	shallow	sub-surface	(topography,	soils,	land	cover),	but	280	
not	for	the	deeper	subsurface.	Also,	stochastic	methods	are	of	 limited	use,	as	they	will	not	281	
capture	 the	 large	 structural	 variability	 in	 the	 formations	 and	 layers	 that	 dominate	282	
continental	domains.	Recent	attempts	to	parameterize	the	sub-surface	are	a	good	first	step.	283	
These	 include	 maps	 of	 global	 permeability	 and	 porosity	 for	 upper	 50	 m	 of	 the	 world’s	284	
aquifers	 [Gleeson	 et	 al.	 2014],	 global	 regolith	 thickness	 [Pelletier	 et	 al.	 2016]	 and	 global	285	
thickness	of	the	upper	aquifers	[De	Graaf	et	al.	2015;	Fan	et	al.	2015;	Fan	2015].	However,	286	
these	 datasets	 have	 been	 globally	 extrapolated	 from	 locally	 established	 empirical	287	
relationships	 between	 subsurface	 properties	 and	 surface	 lithology	 [Hartmann	 and	288	
Moosdorf	 2012],	 soil	 maps	 and	 surface	 topography	 on	 the	 other	 hand.	 None	 of	 these	289	
approaches	resolve	 the	multi-layer	structure	of	aquifers	and	aquitards.	As	a	consequence,	290	
they	provide	a	useful	guide	the	interaction	between	groundwater	and	evaporation,	but	have	291	
limited	 use	 for	 resolving	 true	 hydrogeological	 challenges	 such	 as	 assessing	 global	292	
groundwater	 depletion,	 groundwater	 age	 and	 land	 subsidence	 related	 to	 groundwater	293	
pumping.	 Concerted	 efforts	 are	 needed	 to	 compile	 a	 global	 hydrogeological	 multilayer	294	
model	 based	 on	 national	 geological	 maps	 and	 archives	 and	 local-	 and	 regional	 scale	295	
groundwater	 modelling	 studies,	 providing	 the	 rich	 information	 on	 the	 subsurface	 that	296	
already	exists	for	soils.	297	

4 Model	execution	(computing)	298	

4.1 Modeling	challenges	299	
In	their	final	question	Freeze	and	Harlan	[1969]	ask	if	the	computer	limitations	of	storage	300	
capacity	and	speed	of	computation	have	been	overcome,	and	if	their	blueprint	for	process-301	
based	 hydrologic	 modeling	 is	 now	 economically	 feasible.	 Interestingly,	 we	 have	 made	302	
substantial	 (and	 economically	 feasible)	 advances	 in	 computing,	 yet	 we	 have	 also	 pushed	303	
beyond	what	they	could	envision	with	model	resolution	and	process	complexity.	As	a	result	304	
computing	remains,	ironically,	a	present-day	challenge,	and	we	still	routinely	push	available	305	
computing	resources	 to	 their	 limit	 [Kollet	et	al.	2010;	Wood	et	al.	2011].	We	still	 struggle	306	
with	 tradeoffs	 among	process	 complexity,	 spatial	 complexity,	 domain	 size,	 ensemble	 size,	307	
the	 time	 period	 of	 the	model	 simulation.	We	 also	 still	 struggle	 to	 run	 our	most	 complex	308	
models	 for	 a	 large	 number	 of	 model	 configurations,	 for	 example,	 experimenting	 with	309	
different	model	 parameter	 sets,	 different	 process	 parameterizations,	 and	 different	 spatial	310	
architectures.	To	answer	Freeze	and	Harlan’s	question:	The	computing	limitations	have	not	311	
been	overcome.	312	

The	 challenge	 is	 as	 follows:	 As	 we	 push	 our	 models	 to	 the	 limit	 in	 terms	 of	 process	313	
complexity,	 spatial	 complexity,	 and	 domain	 size,	 the	 computational	 expense	 of	 these	314	
complex	configurations	may	permit	only	a	single	deterministic	simulation	for	a	short	time	315	
period	 [e.g.,	Maxwell	et	al.	2015;	Fatichi	et	al.	2016].	Such	preferences	 for	complexity	and	316	
large-domain	 simulations	 arguably	 sacrifice	 opportunities	 for	 model	 analysis,	 model	317	
improvement,	and	uncertainty	characterization.	The	end	result	 is	 that	our	model	complex	318	
models	 may	 struggle	 with	 physical	 realism	 –	 computational	 limitations	 mean	 that	 it	 is	319	
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difficult	to	identify	and	resolve	problems	in	our	most	complex	models;	hence	more	complex	320	
models	may	not	have	as	much	physical	realism	as	computationally	frugal	alternatives.	321	

4.2 Modeling	solutions	322	
There	are	several	 solutions	 to	 these	computational	challenges,	all	of	which	are	now	being	323	
advanced	by	leading	process-based	hydrologic	modeling	groups.	The	first	solution,	and	the	324	
most	 obvious,	 is	 to	 exploit	 advances	 in	 massively	 parallel	 computation	 (e.g.,	 exa-scale	325	
computing)	 and	 advances	 in	 numerical	 solution	methods	 [Kollet	 et	 al.	 2010;	Wood	 et	 al.	326	
2011;	Paniconi	and	Putti	2015;	Fatichi	et	al.	2016].	This	solution	 is	often	 implemented	by	327	
running	a	complex	model	for	the	finest	grid	resolution	possible	over	the	domain	of	interest	328	
[e.g.,	Maxwell	et	al.	2015].	A	second	solution	to	the	computing	challenge	is	to	identify	model	329	
configurations	that	avoid	redundant	calculations	while	still	capturing	dominant	processes.	330	
This	 can	 be	 accomplished	using	 the	 concept	 of	 hydrologic	 similarity,	 i.e.,	 recognizing	 that	331	
there	is	no	need	to	repeat	calculations	for	areas	of	the	landscape	with	very	similar	forcing	332	
and	 geophysical	 properties	 [e.g.,	 Flügel	 1995;	 Tague	 and	 Band	 2004].	 As	 noted	 earlier,	333	
recent	 applications	 of	 hydrologic	 similarity	 methods	 have	 shown	 that	 it	 is	 possible	 to	334	
reduce	 run	 times	 by	 two	 to	 three	 orders	 of	 magnitude,	 without	 any	 loss	 in	 information	335	
content	[Newman	et	al.	2014;	Chaney	et	al.	2016a].	Also,	hydrologic	similarity	concepts	can	336	
be	 effectively	 applied	 using	multi-scale	methods	 in	 order	 to	 resolve	 the	 dominant	 spatial	337	
gradients	that	drive	flow;	for	example,	using	representative	hillslopes	in	order	to	explicitly	338	
resolve	lateral	flow	processes	[Troch	et	al.	2003;	Berne	et	al.	2005;	Hazenberg	et	al.	2015;	339	
Ajami	et	al.	2016].	A	third	solution	to	the	computing	challenge,	especially	the	concern	that	340	
the	computational	cost	of	complex	models	sacrifices	opportunities	 for	analysis,	 is	 to	 focus	341	
on	 improving	 model	 analysis	 methods.	 Analysis	 of	 complex	 models	 is	 possible	 by	342	
developing	surrogate	models,	i.e.,	models	that	emulate	the	behavior	of	complex	models	and	343	
run	very	quickly	 [Razavi	et	al.	2012].	Analysis	of	complex	models	 is	also	possible	 through	344	
computationally	 frugal	 model	 analysis	 methods	 that	 require	 a	 fewer	 number	 of	 model	345	
simulations	[Rakovec	et	al.	2014;	Hill	et	al.	2015].	A	way	to	support	these	type	of	methods	is	346	
to	 use	 quasi-scale	 invariant	 parameterizations	 (e.g.,	 MPR)	 to	 estimate	 transfer	 function	347	
parameters	 at	 coarser	 resolutions	 instead	 of	 using	 a	 high-resolution	model	 setting.	 Since	348	
parameters	 obtained	 with	 the	 MPR	 technique	 are	 transferable	 across	 scales	 without	349	
significant	performance	loss,	models	can	be	applied	at	higher	spatial	resolutions	as	shown	350	
by	 Kumar	 et	 al	 2013.	 This	 alternative	would	 lead	 to	 computationally	 efficient	 large-scale	351	
hydrologic	predictions	and	allows	performing	parameter	estimation	over	large	domains.	352	

In	 short,	 solving	 computing	 challenges	 will	 require	 judiciously	 combining	 emerging	353	
computing	capabilities,	advanced	numerical	methods,	justifiable	model	simplifications,	and	354	
extensive	use	of	computationally	frugal	model	analysis	methods.	355	

5 Summary	and	next	steps	356	

In	 this	paper	we	 review	key	advances	 in	process-based	hydrologic	models.	We	 start	with	357	
the	 seminal	 blueprint	 for	 a	 process-based	 hydrologic	 model,	 where	 Freeze	 and	 Harlan	358	
[1969]	 pose	 a	 series	 of	 questions	 that	 highlight	 the	 following	 three	 challenges:	 (1)	359	
reasonable	mathematical	descriptions	of	hydrologic	processes;	(2)	sufficient	information	on	360	
model	parameters;	and	(3)	limitations	in	computing.	We	summarize	the	different	ways	that	361	
the	 community	 has	 risen	 to	 meet	 each	 of	 these	 challenges,	 emphasizing	 how	 diverse	362	
hydrologic	modeling	approaches	are	advancing	our	collective	quest	 for	physically	realistic	363	
models.	364	
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In	our	view	 the	challenges	posed	by	Freeze	and	Harlan	 remain	 relevant	 today,	 and	nicely	365	
frame	the	needs	for	future	research.	Specifically,	366	

1. There	is	still	considerable	scope	to	improve	mathematical	descriptions	of	hydrologic	367	
processes.	 A	 major	 research	 challenge	 is	 the	 scaling/closure	 problem,	 i.e.,	 to	368	
represent	 how	 large-scale	 fluxes	 are	 shaped	 by	 small-scale	 heterogeneities,	369	
interactions	 among	processes,	 and	 the	 connectivity	of	water	 across	 the	 landscape.	370	
While	 the	 community	 has	 made	 progress	 in	 this	 challenge,	 through	 statistical-371	
dynamical	 models,	 stochastic	 upscaling	 theory,	 scale-appropriate	 flux	372	
parameterizations,	 and	 spatial	 integration	 across	 discrete	 landscape	 types,	 much	373	
work	 is	 still	 required	 both	 to	 develop	 new	 closure	 schemes	 and	 to	 systematically	374	
compare	existing	modeling	approaches.	375	

2. There	is	also	considerable	scope	to	improve	information	on	model	parameter	values	376	
and	 their	 associated	 uncertainties.	 Advances	 in	 parameter	 estimation	will	 require	377	
focused	 effort	 on	 improving	 the	 available	 geophysical	 information	 (e.g.,	 through	378	
improved	observations),	 improving	the	links	between	geophysical	 information	and	379	
model	parameters,	 and	more	effective	use	of	multivariate	data	 to	 constrain	model	380	
parameter	values.	381	

3. There	 is	 also	 a	 strong	 need	 to	 more	 effectively	 use	 the	 available	 computing	382	
resources.	 We	 argue	 here	 that	 in	 addition	 to	 exploiting	 advances	 in	 massively	383	
parallel	computation	and	numerical	solution	methods,	we	can	also	make	much	more	384	
effective	 use	 of	 the	 available	 computing	 through	more	 efficient/agile	models	 (e.g.,	385	
use	 of	 hydrologic	 similarity	 concepts).	 More	 effective	 use	 of	 available	 computing	386	
resources	increase	capabilities	for	model	analysis	and	uncertainty	characterization,	387	
shining	the	light	toward	further	model	improvements.	388	

Stepping	 back,	we	 see	 that	 the	 questions	 posed	 by	 Freeze	 and	Harlan	 [1969]	 are	 indeed	389	
very	 challenging,	 and	 that	 the	 community	 has	 risen	 to	 hydrologic	modeling	 challenges	 in	390	
diverse	and	productive	ways.	The	community	has	made	noteworthy	advances	in	improving	391	
mathematical	 descriptions	 of	 hydrologic	 processes,	 in	 parameter	 estimation,	 and	 in	392	
identifying	 justifiable	 model	 simplifications	 that	 make	 more	 effective	 use	 of	 available	393	
computing	 resources.	 Many	 of	 these	 modeling	 advances	 are	 general,	 and	 can	 be	 applied	394	
across	multiple	models	of	different	type	and	complexity.	Looking	forward,	we	argue	that	it	395	
is	important	to	take	a	unified	perspective,	deliberately	departing	from	previous	debates	on	396	
the	 “correct”	 approach	 to	 hydrologic	 modeling,	 and	more	 effectively	 use	 the	 diversity	 of	397	
modeling	 tools	 in	order	 to	 advance	our	 collective	quest	 for	physically	 realistic	hydrologic	398	
models.		399	

	The	 key	 challenge	 is	 perhaps	 best	 posed	 recently	 by	 Eric	 F.	 Wood:	 “What	 modeling	400	
experiments	 need	 to	 be	 performed	 to	 resolve	 the	 “scale”	 question	 and	what	 is	 the	 trade-off	401	
among	 model	 complexity,	 the	 physical	 basis	 for	 land	 parameterizations	 and	 observational	402	
data	 for	estimating	model	parameters?”	 [Wood	2012].	 This	 issue	 stimulates	 and	organizes	403	
our	research	activities.	We	need	to	continually	(and	collectively)	refocus	on	this	challenge	in	404	
order	to	accelerate	advances	in	process-based	hydrologic	models.	405	
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